Lepton Number
   HOME

TheInfoList



OR:

In
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
, lepton number (historically also called lepton charge) is a conserved
quantum number In quantum physics and chemistry, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. Quantum numbers correspond to eigenvalues of operators that commute with the Hamiltonian—quantities that can be kno ...
representing the difference between the number of
lepton In particle physics, a lepton is an elementary particle of half-integer spin ( spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutr ...
s and the number of antileptons in an elementary particle reaction. Lepton number is an additive
quantum number In quantum physics and chemistry, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. Quantum numbers correspond to eigenvalues of operators that commute with the Hamiltonian—quantities that can be kno ...
, so its sum is preserved in interactions (as opposed to multiplicative
quantum number In quantum physics and chemistry, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. Quantum numbers correspond to eigenvalues of operators that commute with the Hamiltonian—quantities that can be kno ...
s such as parity, where the product is preserved instead). Mathematically, the lepton number ~ L ~ is defined by :~ L = n_\ell - n_ ~, where *~ n_\ell \quad is the number of
lepton In particle physics, a lepton is an elementary particle of half-integer spin ( spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutr ...
s and *~ n_ \quad is the number of
antilepton In particle physics, a lepton is an elementary particle of half-integer spin (spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutr ...
s. Lepton number was introduced in 1953 to explain the absence of reactions such as : in the
Cowan–Reines neutrino experiment The Cowan–Reines neutrino experiment was conducted by Washington University in St. Louis alumnus Clyde L. Cowan and Stevens Institute of Technology and New York University alumnus Frederick Reines in 1956. The experiment confirmed the existenc ...
, which instead observed : This process,
inverse beta decay Inverse beta decay, commonly abbreviated to IBD, is a nuclear reaction involving an electron antineutrino scattering off a proton, creating a positron and a neutron. This process is commonly used in the detection of electron antineutrinos in ...
, conserves lepton number, as the incoming
antineutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is ...
has lepton number −1, while the outgoing
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
(antielectron) also has lepton number −1.


Lepton flavor conservation

In addition to lepton number, lepton family numbers are defined as : ~ L_\mathrm ~~ the electron number, for the
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
and the
electron neutrino The electron neutrino () is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name electron neutrino. It was first hypothesized by Wolfgang Pauli ...
; : ~ L_\mathrm ~~ the muon number, for the
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As wi ...
and the
muon neutrino The muon neutrino is an elementary particle which has the symbol () and zero electric charge. Together with the muon it forms the second generation of leptons, hence the name muon neutrino. It was discovered in 1962 by Leon Lederman, Melvin Schwar ...
; and : ~ L_\mathrm ~~ the tau number, for the
tauon The tau (), also called the tau lepton, tau particle, tauon or tau electron, is an elementary particle similar to the electron, with negative electric charge and a spin of . Like the electron, the muon, and the three neutrinos, the tau is a l ...
and the tau neutrino. Prominent examples of lepton flavor conservation are the
muon decay A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As wit ...
s : and : In these decay reactions, the creation of an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
is accompanied by the creation of an
electron antineutrino The electron neutrino () is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name electron neutrino. It was first hypothesized by Wolfgang Pauli ...
, and the creation of a positron is accompanied by the creation of an electron neutrino. Likewise, a decaying negative
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As wi ...
results in the creation of a
muon neutrino The muon neutrino is an elementary particle which has the symbol () and zero electric charge. Together with the muon it forms the second generation of leptons, hence the name muon neutrino. It was discovered in 1962 by Leon Lederman, Melvin Schwar ...
, while a decaying positive muon results in the creation of a
muon antineutrino The muon neutrino is an elementary particle which has the symbol () and zero electric charge. Together with the muon it forms the second generation of leptons, hence the name muon neutrino. It was discovered in 1962 by Leon Lederman, Melvin Schwa ...
. Finally, the
weak decay In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction ...
of a lepton into a lower-mass lepton always results in the production of a
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
-
antineutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is ...
pair: : One neutrino carries through the lepton number of the decaying heavy lepton, (a
tauon The tau (), also called the tau lepton, tau particle, tauon or tau electron, is an elementary particle similar to the electron, with negative electric charge and a spin of . Like the electron, the muon, and the three neutrinos, the tau is a l ...
in this example, whose faint residue is a tau neutrino) and an antineutrino that cancels the lepton number of the newly created, lighter lepton that replaced the original. (In this example, an muon antineutrino with ~ L_\mathrm = -1~ that cancels the muon's ~ L_\mathrm = +1~.)


Violations of the lepton number conservation laws

Lepton flavor is only approximately conserved, and is notably not conserved in neutrino oscillation. However, total lepton number is still conserved in the Standard Model. Numerous searches for physics beyond the Standard Model incorporate searches for lepton number or lepton flavor violation, such as the hypothetical decay : Experiments such as MEGA and SINDRUM have searched for lepton number violation in muon decays to electrons; MEG set the current branching limit of order and plans to lower to limit to after 2016. Some theories beyond the Standard Model, such as
supersymmetry In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories e ...
, predict branching ratios of order to . The
Mu2e Mu2e, or the Muon-to-Electron Conversion Experiment, is a particle physics experiment at Fermilab in the US. The goal of the experiment is to identify physics beyond the Standard Model, namely, the conversion of muons to electrons without the e ...
experiment, in construction as of 2017, has a planned sensitivity of order . Because the lepton number conservation law in fact is violated by chiral anomalies, there are problems applying this symmetry universally over all energy scales. However, the quantum number is commonly conserved in
Grand Unified Theory A Grand Unified Theory (GUT) is a model in particle physics in which, at high energies, the three gauge interactions of the Standard Model comprising the electromagnetic, weak, and strong forces are merged into a single force. Although this ...
models. If neutrinos turn out to be Majorana fermions, neither individual lepton numbers, nor the total lepton number : ~ L \equiv L_\mathrm + L_\mathrm + L_\mathrm ~, nor : would be conserved, e.g. in neutrinoless
double beta decay In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move clos ...
, where two neutrinos colliding head-on might actually annihilate, similar to the (never observed) collision of a neutrino and antineutrino.


Reversed signs convention

Some authors prefer to use lepton numbers that match the signs of the charges of the leptons involved, following the convention in use for the sign of
weak isospin In particle physics, weak isospin is a quantum number relating to the weak interaction, and parallels the idea of isospin under the strong interaction. Weak isospin is usually given the symbol or , with the third component written as or . It can ...
and the sign of
strangeness In particle physics, strangeness ("''S''") is a property of particles, expressed as a quantum number, for describing decay of particles in strong and electromagnetic interactions which occur in a short period of time. The strangeness of a parti ...
quantum number ( for quarks), both of which conventionally have the otherwise arbitrary sign of the
quantum number In quantum physics and chemistry, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. Quantum numbers correspond to eigenvalues of operators that commute with the Hamiltonian—quantities that can be kno ...
match the sign of the particles' electric charges. When following the electric-charge-sign convention, the lepton number (shown with an over-bar here, to reduce confusion) of an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
,
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As wi ...
,
tauon The tau (), also called the tau lepton, tau particle, tauon or tau electron, is an elementary particle similar to the electron, with negative electric charge and a spin of . Like the electron, the muon, and the three neutrinos, the tau is a l ...
, and any
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
counts as ~ \bar = -1 ~; the lepton number of the
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
,
antimuon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As wit ...
,
antitauon The tau (), also called the tau lepton, tau particle, tauon or tau electron, is an elementary particle similar to the electron, with negative electric charge and a spin-1/2, spin of . Like the electron, the muon, and the three neutrinos, the t ...
, and any
antineutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is ...
counts as ~ \bar = +1 ~. When this reversed-sign convention is observed, the
baryon number In particle physics, the baryon number is a strictly conserved additive quantum number of a system. It is defined as ::B = \frac\left(n_\text - n_\bar\right), where ''n''q is the number of quarks, and ''n'' is the number of antiquarks. Bary ...
is left unchanged, but the difference is replaced with a sum: whose number value remains unchanged, since : and :


See also

*
Baryon number In particle physics, the baryon number is a strictly conserved additive quantum number of a system. It is defined as ::B = \frac\left(n_\text - n_\bar\right), where ''n''q is the number of quarks, and ''n'' is the number of antiquarks. Bary ...


Footnotes


References

{{Authority control Conservation laws Particle physics Leptons Flavour (particle physics) he:מספר לפטוני